
©	2017	Arm	Limited	

Milosch	Meriac
Principal	Security	Research	Lead

milosch.meriac@arm.com

Modern	security
for	microcontrollers

The	challenge	of	scaling	IoT

Gaining	user-trust	&	keeping	it



©	2017	Arm	Limited	2

About	me	&	my	projects
§ Principal	Security	Research	Lead	at	

Arm	in	Cambridge,	UK.	Specialized	
on	embedded	hardware	security.

§ Developed	the	ArmMBED uVisor,	a	
secure	hypervisor	for	Arm	Cortex-M	
microcontrollers.

§ Before	joining	Arm,	I’ve	created	a	
range	of	open	hardware	designs	
and	software	tools	around	RF(ID)	/	
Bluetooth	Low	Energy	security	
research	and	electronic	art	projects.

§ More	information	on	my	private	
projects	at	meriac.com,	Twitter	
@FoolsDelight &	GitHub	@meriac. O p e n P C D . o r g O p e n P I C C . o r g



©	2017	Arm	Limited	3

X b o x 	 L i n u x 	 C o r e 	 T e a m

B l i n k e n l i g h t s
S t e r e o s c o p e

O p e n B e a c o n & 	 S o c i o P a t t e r n s



©	2017	Arm	Limited	

Quick	introduction:
Security	research	at	Arm



©	2017	Arm	Limited	5

Collaboration	Opportunities	with	Arm	Research
Security-topics	we're	working	on

§ Enforcement	of	device	policies	with	hardware	security	features,	secure	
protocols	and	instrumentation	of		devices	and	networks

§ IoT malware	detection	(device	and	network),	recovery	from	malware	
and	containment	of	affected	devices:	from	very	constrained	devices,	
through	networks	up	to	data	centers

§ Enabling	end-to-end	security/privacy	architecture	paradigms	in	cloud	
service	products

§ Enabling	and	promoting	automated	verification	of	Arm	ecosystem	
products

§ Expanding	our	tools	for	automated	hypervisor	and	system	verification



©	2017	Arm	Limited	6

Collaboration	Opportunities	with	Arm	Research
Strategic	Security	Projects

§ Support	next	generation	system	security	architectures	in	heterogeneous	
systems
§ E.g.	CHERI,	seL4	and	MirageOS

§ Enabling	memory	authentication	and	encryption	for	mutually	distrustful
edge- &	cloud-computing

§ Arm	architecture	side	channel	evaluations	and	mitigations
§ Particularly	around	branching,	speculative	execution,	pipelines	and	caches.

§ Support	creation	of	formally	verified	secure	and	safe	systems	software
§ Improving	our	verification	tools	and	formal	specifications.



©	2017	Arm	Limited	7

Security	Research	at	Arm
Summary

Separation	
and	Isolation	
Mechanisms

Trust,	
Identity	and	
Provenance

Side	
Channels

Specifications	
and	

Correctness

Crypto	
Performance,	
Emerging	
Ciphers



©	2017	Arm	Limited	

Why	is
microcontroller	security
hard	?



©	2017	Arm	Limited	9

System	designers	must	have	clear	
threat	models	and	act	accordingly.	
Threat	models	must	be	designed	into	
the	system	starting	at	silicon	level.

System	designers	and	builders	must	find	
all	flaws	- attackers	only	have	to	find	
one.	Old	stuff	has	old	bugs	– we	won’t	
run	out	of	entertainment	anytime	soon.	

Device	lifetime
The	security	of	a	system	is	dynamic	
over	its	lifetime.		Lifetimes	of	home	
automation	nodes	can	be	10+	years.

Attacks	scale	well
The	assumption	of	being	hacked	at	
some	point	requires	a	solid	
mitigation	strategy	for	regaining	
control	and	simple,	reliable	and	
inexpensive	updates.	Do	our	
defenses	scale	with	our	attackers?

Assume	you	can’t	prevent	
being	hacked
Value	of	bugs	is	expressed	by	value =	
number_of_installations x	
device_value.		Increased	value	and	
large	deployments	drive	attackers	-
especially	in	the	IoT.	Massively	
parallelized	security	researchers	&	
attackers	vs.	limited	product	
development	budget	&	time	frame.

Security
+	time
=	comedy
If	a	product	is	successful,
it	will	be	hacked



©	2017	Arm	Limited	10

Flat	address	spaces	are	common	for	
microcontrollers	- resulting	from	their	lack	
of	memory	management	units	(MMUs):	
yet	that	does	not	justify	the	absence	of	
privilege	separation.	

Many	existing	microcontrollers	like	Arm	
Cortex-M3/M4	have	a	hardware	memory	
protection	unit	(MPU)	to	compensate	for	
security	impact	of	missing	MMU.

No	separation
Flat	memory	models	and	avoidance	
of	MPUs	ignores	vital	security	
models	like	“least	privilege”.

Escalation
Flat	memory	models	enable	
escalation	&	persistence	of	exploits:	
Device	safety	suffers.	Uncontrolled	
writing	to	flash	memories	allows	
persistent	exploits	across	reboots.	

Verification
Security	verification	impossible	due	
to	the	immense	attack	surface	and	
lack	of	secure	interfaces	between	
system	components.

Flat	memory
models

Leakage
“All	your	bases	are	belong	to	us”	–
thanks	to	leakage	of	identity	keys	or	
API	tokens	attacks	are	able	to	
progress	up	the	cloud	stack.

The	80’s	called,	and	they	want
their	security	model	back



©	2017	Arm	Limited	11

Microcontroller	storage	security	is	still	
highly	diverse	and	often	originates	from	
code-read	protection.	Yet	your	data	must	
stay	secret,	Keys	and	firmware	updates	
must	be	secured	against	tampering	and	
rollback.

Malware	must	not	be	allowed	to	become	
persistent	by	installing	itself	into	flash.	
Sending	people	out	to	reset	or	even	re-
flash	pwnd IoT devices	is	not	an	option.	
We	must	ensure	for	device	recovery	to	
scale	better	than	the	device	attacker.

Out	of	memory
As	functionality	and	wireless	stacks	
grow,	microcontrollers	run	out	code	
memory	– firmware	downloads	must	
therefore	often	be	buffered	externally	
to	prevent	device	bricking. Update	
mechanisms	are	often	vulnerable	in	
presence	of	local	attackers controlling	
the	power	supply,	glitching CPUs	or	
manipulating	externally	stored	data.

Data	security?
How	confident	are	you,	that	your	
SRAM	is	erased	when	resetting	the	
copy	protection	fuses	on	your	
microcontrollers?	Additionally	data	
can	often	be	extracted	indirectly by	
using	CPU	core	registers,	bootloader	
bugs	or	by	stepping	through	code.

Data	security,
seriously?

Side	channels	leakage
Microcontrollers	often	vulnerable	to	
key/data	extraction	via	side	channels	
like	power	or	execution	time.

Check	your	security	assumptions



©	2017	Arm	Limited	

A	consistent	security	model:
Privilege	separation
for	low-end	Microcontrollers



©	2017	Arm	Limited	13

Security	for	Microcontrollers?
Consistent	security	models	despite	differences	in	architecture

§ Compartmentalization	of	threads	and	
processes	on	microcontrollers	consistent	
with	MMU-enforced	application	CPU	
security:	Private	stack	and	data	sections

§ Initialization	of	memory	protection	unit	
based	(MPU)	on	process	permissions:

§ Whitelist	approach	– only	required	peripherals	should	be	
accessible	to	each	box	(“Least	Privilege”)

§ Each	box	must	have	private	.bss data	and	stack	sections

§ Switch	execution	to	non-secure	side/app,	
continue	boot	unprivileged	to	initialize	OS	
and	libraries	to	reduce	the	attack	surface



©	2017	Arm	Limited	14

Memory	Protection	Units	on	Arm	Cortex-M	Microcontrollers

§ Can	prevent	application	tasks	from	
corrupting	OS	or	other	task	data:	
Improved	system	reliability	through	
hardware	security.

§ Enable	configurable	memory	regions
§ Address

§ Size

§ Memory	attributes

§ Access	permissions	

§ Optional	in	all	Cortex-M	and	
available	on	most	(except	Cortex-M0)

Cortex-M

MEMORY

data	for

task	A

data	for	

task	C

data	for	

OS	kernel

data	for

task	B

I/O	#2
I/O	#1
I/O	#0

I/O	#n
MPU

MPU	
configuration

OS	kernel
(privileged)

task 
A

task
B

task	
C

ARM



©	2017	Arm	Limited	15

§ Reduce	attack-surface	of	function-critical	code	
and	increase	bug-resilience

§ Trusted	messages	contain	commands,	data	or	
firmware	parts.

§ Box	security	not	affected	by	communication	
stack	exploits,	bugs	or	infections	outside	of	
trusted	box.

§ Payload	delivery	is	agnostic	of	protocol	stack.

§ Resilient	box	communication	over	the	available	
channels,	protocol-independent:

§ Ethernet,	CAN-Bus,	USB,	Serial

§ Bluetooth,	Wi-Fi,	ZigBee,	6LoWPAN

Use	case:	Secure	outbound	communication

Exposed	box	with	
communication	stack

Decrypt	
and	verify	
using	
DTLS

GAP

Secured	and	trusted	
device	process

GATT

AP

BLE	LL

Trusted	box	without	
communication	Stack

Opaque	Block

Commands,
Data,

Firmware	Blob

Opaque

Bluetooth
Communication	

Stack

Ex
po

se
d	
Ap

pl
ic
at
io
n	
Co

de

IoT Device	owned	by	user.
Initial	identity	provisioned	by	System	Integrator
Messages	delivered	agnostic	of	communication	stack



©	2017	Arm	Limited	16

§ Communication	protected	using	TLS.

§ Raw	message	payloads	decrypted	and	
verified	directly	by	protected	code:

§ TLS	protocol	box	not	exposed	to	communication	protocol	
stack	bugs.

§ No	interference	by	other	boxes.

§ Client-authentication	and	encryption	keys	
are	protected	against	malware,	key-
extraction	and	identity	theft.

§ Device-malware	cannot	interfere	without	
knowing	encryption- or	signing-keys.

Use	case:	Secure	server	communication	&	Device	identity

Exposed	box	with	
communication	stack

Decrypt	
and	verify	
using	
DTLS

TLS	box	handles
only	the	SSL	protocol

Opaque	BlockOpaque

Initial	keys	provisioned	by	System	Integrator.
Messages	decoded	independent	of	stacks	using	
mbed TLS	in	separate	security	context

Ex
po

se
d	
Ap

pl
ic
at
io
n	
Co

de

Decryption	Keys

Decrypted	BlockDecrypted

IP	Stack,
Wireless	
Stack



©	2017	Arm	Limited	17

Use	case:	Secure	remote	firmware	update

Exposed	box	with	
communication	stack

GAP

GATT

AP

BLE	LL

Bluetooth
Communication	

Stack

Flash	interface	box	protected		by	mbed	uVisor	–
without	own	communication	stack

Cu
st
om

	A
pp

lic
at
io
n	
Co

de

Opaque	Block

IoT	device	owned	by	user,
Initial	identity	provisioned	by	System	Integrator,
Messages	delivered	independent	of	stacks

Firmware
update	blocks

FW005

Firmware	Update	Image

Secure	Storage,
Firmware	Update	Blocks

Re-flash	Untrusted	
Application	Upon	Completion

Opaque

Secured	and	trusted	
device	process

Decrypt	
and	verify	
using	
DTLS

§ Delivery	of	firmware	update	must	be	
decoupled	from	a	protocol-independent	
firmware	image	verification

§ Bugs	in	communication	stacks	or	cloud	
infrastructure	must	not	compromise	the	
firmware	update:

§ End-to-end	security	for	firmware	updates	between	the	
firmware	developer	and	the	secure	box

§ Secure	box	on	the	device	has	exclusive	flash-write-access

§ Box	with	flash	controller	ACLs	only	needs	the	public	
update	key	to	verify	validity	of	firmware.

§ Local	malware	can’t	forge	a	valid	firmware	signature	to	
the	firmware	update	box,	the	required	private	firmware	
signature	key	is	not	in	the	device.



©	2017	Arm	Limited	18

Use	case:	Controlled	malware	recovery
Devices	can	be	remotely	recovered	from	malware:

§ Enforced	communication	through	the	exposed	side	to	the	server.

§ Thanks	to	flash	controller	ACL	restrictions,	malware	cannot	modify	monitor	
code	or	install	itself	into	non-volatile	memories.

§ Receive	latest	security	rules	and	virus	behaviour	fingerprints	for	detection.

§ Share	detected	pattern	fingerprint	matches	with	control	server

§ Distributed	detection	of	viruses	and	live	infrastructure	attacks.

When	communication	with	server	breaks	for	minimum	time:
§ Disambiguation	from	network	failure:
Parts	of	the	device	stack	are	reset	to	a	known-good	state.

§ Device-reboot	prevents	malware	from	staying	persistent	on	the	device.

§ Device	switches	to	a	safe	mode	after	boot	to	rule	out	network	problems	or	to	
remotely	update	the	firmware	if	needed	– and	continues	operation.

https://commons.wikimedia.org/wiki/File:Biohazard.svg



©	2017	Arm	Limited	19

Optional	security	extension	for	the	Armv8-M	architecture

§ Dramatically	simplified	security	model	for	Safety-critical	device	code

§ New	security	architecture	for	deeply	embedded	Cortex-M	processors

§ Better	containerisation	of	software:	Simplified	security	assessment	of	
embedded	devices

Similar	and	compatible	to	existing	TrustZone	technology

§ New	architecture	tailored	for	embedded	devices

§ Adds	new	security	domains	with	visibility	on	system/bus	level	–
enabling	security-aware	peripherals,	untrusted	drivers	and	secure	
DMA.

§ Preserves	low	interrupt	latencies	of	Arm	Cortex-M

§ Provides	high	performance	cross-domain	calling

Outlook:	Arm	TrustZone Technology	for	Microcontrollers
Bringing	Arm	security	extensions	to	the	embedded	world



©	2017	Arm	Limited	20

Applying	Arm	TrustZone	to	Cortex-M	Microcontrollers

§ Armv8-M	architecture	introduced	with	upcoming	
Cortex-M23	and	Cortex-M33	microcontrollers

§ Extends	hardware	security	features	to	system	level
§ Security-aware	DMA	peripherals	and	debugging
§ Security	extended	to	memories	and	peripherals

through	bus	filters
§ Memory	protection	controllers	(MPC)
§ Peripheral	protection	controllers	(PPC)

§ CPU	can	run	in	secure	and	in	non-secure	states,
with	visibility	for	all	bus	peripherals

§ Efficient	and	privacy-enabled	transitions	between
the	two	security	modes	

§ Two	instances	of	the	interrupt	vector	table,
one	for	exclusive	use	on	the	secure	side.

§ Stack	overflow	protection Secure	regions

Non-secure	regions



©	2017	Arm	Limited	

Scaling	Security:
Moving	towards	an
IoT Immune	System



©	2017	Arm	Limited	22

Moving	towards	IoT Immune	Systems
Overview

• Detection

– Node	Instrumentation	&	Behaviour	Sensors

– Fingerprinting	Node	Behaviour	and	System	Network	Traffic

• Management

– Big	data	analysis	of	system	behaviour	over	all	customers		of	a	“Security	as	a	Service”	provider	to	weed	out	false	positives	and	
to	establish	a	baseline	for	device	behaviour

– Live	&	Continuous	“System	Health	Check”

– Isolation,	Containment	and	re-flashing	of	infected	Nodes:	“IoT	Immune	System”

• Prevention,	Removal	&	Containment

– Immunization	of	System	– identify	Loopholes	by	using	statistical	analysis	(Device	Types,	Firmware	versions,	System	Events,	
Program	Execution	Patterns,	Traffic	Patterns)	of	events	leading	up	to	an	infection.

– Block	know-malicious	signatures	on	network	boundaries	using	centralized	block	lists	to	protect	outdated	devices.



©	2017	Arm	Limited	23

IoT Immune	System	Instrumentation
Requirements	for	IoT Node	Malware	Detection	&	Removal

Node	Instrumentation
• CPU	level	sensors:

– Program	Counter	&	Performance	counters	statistics

– Detection	of	Code/Data	access	patterns

– Debug-Interfaces	(CoreSight TMC	etc)

• Standardized	Board	level	sensors	&	protocols

– CPU/Board	Power	consumption	patterns

– Inbound/Outbound	traffic	classification/density

– Intrusion	sensors	(Housing,	Light	Sensors,	Chip	level	
etc.)

– Hardware	revision,	Product	ID,	Manufacturer	and	
Firmware	version	of	the	device	visible	to	log	server

– Acceleration	sensors	to	detect	movement/vibrations	
resulting	from	physical	attacks

Implementation	Details
• Die-Sensors	or	external	watchdogs	measure	system	
behaviour

• Sign	internal/external	measurements	plus	timestamps	and	
store	in	cryptographic	ledger	– can	be	stored	in	local	
network	or	in	offline	storage	if	needed.

• Establish	distributed	Traffic	Sensors	for	measuring	Traffic	
density	and	direction	– to	enable	protection	within	the	
(mesh)	network.

• Signed/Encrypted	packets	with		traffic/behaviour	
observations	are	sent	back	to	centralized	log	servers	(local	
and	remote)

• Feed	signed/encrypted	behaviour	measurements	back	to	
Application	CPU	which	is	responsible	for	sending	the	
measurements	back	to	centralized	servers.

• Non-Compliant	applications	are	reset/re-flashed	if	they	
can’t	prove	message	delivery	cryptographically	using	
crypto-watchdog	methodologies.



©	2017	Arm	Limited	24

IoT Immune	System	Instrumentation
Network	Level	Immune	Reactions	&	Recovery

Node	requirements	
• Ability	to	isolate/quarantine	nodes	by	changing/revoking	
access	keys	and	tunnelling	traffic	to	a	control	host	(log	
server?)

• In	cases	where	node	functionality	is	critical,	we	must	
enable	infected	node	operation	– but	maintain	network	
QoS and	protect	internal	and	external	hosts.

• Ability	to	reset	&	re-flash	nodes	wirelessly	– even	assuming	
a	malicious	application	on	the	Node.

• Standardize	FOTA	file	formats	and	network	protocols

• Prevent	firmware	downgrade	attacks	of	nodes,	with	
operational	exceptions	reverting	to	previously	used	
firmware	version	over	a	limited	time.

• “Security	as	a	Service”	provider	can	only	push	node-vendor-
signed	Firmware	– “Least	Privilege”	

• Establish	Watchdog-Style	FOTA	to	externally	enforce	
firmware	update	of	infected	systems	remotely.

Implementation	Details
• FOTA	requirements	including	policy	enforcement	and	
downgrade	protection	are	already	addressed	in	the	latest	
Firmware	Manifest	Format.	We	started	an	IETF	
standardization	process	already.

• Isolation	of	nodes	can	be	achieved	by	implementing	
software	defined	networking	protocols.

– In	the	most	simple	case	networks	can	be	partitioned	
via	Virtual	LAN	ID’s	(VLAN	ID)	– which	are	commonly	
supported	by	managed	routers.	It	might	make	sense	
to	extend	the	concept	of	Layer	VLAN’s	to	mesh	
networks.	VLAN	ID’s	can	be	used	End-to-End	between	
Mesh	Router	and	cloud	architecture	by	using	L2TP.

– In	the	advanced	case	the	(wireless)	network	applies	
multiple	encryption	keys	to	segment	the	network	and	
to	enforce	distinct	policies.

• Secure	Watchdog	for	remote	recovery	from
malware	infection.	



©	2017	Arm	Limited	25

IoT Health	Services
Health	as	a	service	for	the	internet	of	things

Data	Processing
• Receive	lossy	aggregated	data	from	Node	and	Network	
sensors.

• To	protect	the	users	privacy,	pre-
aggregation/anonymization	of	traffic-activity	patterns	
should	be	done	in	the	local	network	(edge	router	etc.)

• Correlate	sensor	Data	across	similar	devices	and	similar	
Firmware	revisions

• Detect	unusual	patterns	in	data	flows	(for	example	an	IoT	
sensor	actively	scanning	the	extended	network	for	
vulnerable	devices)	– especially	in	wireless	mesh	networks	

• Big	data	analysis	across	all	service	customers	to	weed	out	
false	positives.	Behavioural	changes	due	to	different	
firmware	revisions	can	be	detected	more	reliably

• Easier	to	detect	unusual	patterns	in	larger	data	sets	due	to	
more	data	on	devices	with	similar	configuration

Actions	taken
• Trigger	Network	immune	reactions	depending	on	calculated	
likelihood

• Optionally	allow	the	Health	Service	to	take	action	on	your	
behalf	(trigger	firmware	update,	isolate	nodes	etc.).

• Optionally	disambiguate	security	warnings	(Incidents	of	
lower	likelihood)	by	human	operators	for	premium	
customers	– and	take	extended	action	if	necessary.

• After	identifying	Infection	Vectors,	distribute	
traffic/behaviour	signatures	for	devices	without	patches

• Enforce	policies	so	devices	with	unpatched	devices	can	only	
be	reached	by	filtered	data	(keeping	them	functional,	but	
safe	at	higher	latencies	– Remote	Man-In-The	middle	
firewall	/	DPI).

• Run	filters	at	trusted	border	router	to	protect	customers	
privacy.	After	an	infection	is	detected,	customer	gets	choice	
to	involve	cloud	service	into	recovery	efforts.



©	2017	Arm	Limited	26

Trusting	IoT Health	Services
Edge	Computing	Appliances	for	Resilience	and	User	Privacy	Protection
• Objective

– Establish	trusted	cloud	computing	appliances	that	will	be	deployed	to	the	local	network	for	greater	availability	and	trust.	
Appliances	can	be	as	simple	as	hardened	routers	running	simple	software	process	or	high-end	tamper-proof	19”	rack	servers.

– Establish	Trusted	Execution	Environment	(TEE)	boxes	that	can	be	remotely	provisioned	(cloud	or	owner)	– hardened	against	
local	physical	attacks	(cold	boot	attacks,	malicious	board	level	modifications	&	attacks)

– Cloud		services	can	push	down	low-latency	jobs,	computation	tasks,	machine	learning,	application	of	machine	learned	
models	or	for	mirroring	data	speculatively	from	or	to	the	local	network.

– Platform	guarantees	integrity	and	security	across	multiple	applications/VM’s	running	on	the	device	and	protects	against	users	
tampering	with	the	device	locally	(exfiltration	of	data,	changing	behaviour	etc.)

– Increase	the	resilience	of	cloud	applications:	Core	functionality	of	a	cloud	application	can	work	without	network	connectivity.	
See	Amazon	AWS	Greengrass as	best-practice	example	for	accessible	compute	at	the	edge.

– Support	low	power	devices	with	trusted	computing	resources	as	important	tasks	can	be	migrated	to	AC-powered	appliance	
in	the	local	network.

• Hardware	Security	Requirements

– Encrypt	and	authenticate	external	memory	interfaces	(DDRAM,	Flash)	for	operation	in	mutually	distrustful	environments

– Establish	hardware	root	of	trust	back	to	the	SoC-manufacturer	to	prevent	emulation-attacks



©	2017	Arm	Limited	27

IoT Immune	System		&	Health	Services
Summary
• Reduce	Complexity	of	the	local	system/network	security	to	standardized sensors	and	

Immune	Reaction	Interfaces.

• Enable	Big-Data	Security	Analysis	of	Malware	detection	sensors	– reduce	noise	by	
comparing	similar	devices	across	all	customers	while	preserving	the	customers	privacy.	
Detect	infection	vectors	statistically	by	comparing	commonalities	of	different	hosts	
running	the	same	firmware	to	establish	baseline

• Monitor	spread	of	malware	and	infer	infected	hosts	from	historic	traffic	metadata	to	
coordinate	node	isolation.

• Aggregated	analysis	in	cloud	services	allows	continuous	improvement	of	security	rules.	
These	rules	can	be	exported	back	to	edge	computing	notes	for	greater	privacy	and	
resilience.

• Rules	/	filters	which	are	verified	in	cloud	services	can	be	enforced	with	low	overhead	at	
mesh	level	to	prevent	local	spreading	of	malware.



©	2017	Arm	Limited	28

Questions	&	Further	Reading
§ Please	contact	me	at	milosch.meriac@arm.com with	your

questions	and	suggestions.	We’re	hiring	– please	send	me	a	mail!

§ The	ARM	IoT Security	Manifesto, describing	an	IoT Immune	System:
https://pages.arm.com/iot-security-manifesto.html (Set	of	whitepapers)

§ The	Arm	Platform	Security	Architecture:
https://developer.arm.com/products/architecture/platform-security-architecture
https://pages.arm.com/PSA-Building-a-secure-network.html (Whitepaper)

§ High-End	Security	for	Low-End	Microcontrollers:
Hardware-Security	Acceleration	on	Armv8-M	Systems
https://doi.org/10.5281/zenodo.571159 (Slides)
https://doi.org/10.5281/zenodo.571158 (Whitepaper)



2929

Thank	You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद 

©	2017	Arm	Limited	



3030 ©	2017	Arm	Limited	

The	Arm	trademarks	featured	in	this	presentation	are	registered	trademarks	or	
trademarks	of	Arm	Limited	(or	its	subsidiaries)	in	the	US	and/or	elsewhere.	 All	rights	
reserved.	 All	other	marks	featured	may	be	trademarks	of	their	respective	owners.

www.arm.com/company/policies/trademarks


